8-1/x-6/x^2

Simple and best practice solution for 8-1/x-6/x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8-1/x-6/x^2 equation:


D( x )

x = 0

x^2 = 0

x = 0

x = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

8-(1/x)-(6/(x^2)) = 0

8-x^-1-6*x^-2 = 0

t_1 = x^-1

8-6*t_1^2-1*t_1^1 = 0

8-6*t_1^2-t_1 = 0

DELTA = (-1)^2-(-6*4*8)

DELTA = 193

DELTA > 0

t_1 = (193^(1/2)+1)/(-6*2) or t_1 = (1-193^(1/2))/(-6*2)

t_1 = (193^(1/2)+1)/(-12) or t_1 = (1-193^(1/2))/(-12)

t_1 = (193^(1/2)+1)/(-12)

x^-1-((193^(1/2)+1)/(-12)) = 0

1*x^-1 = (193^(1/2)+1)/(-12) // : 1

x^-1 = (193^(1/2)+1)/(-12)

-1 < 0

1/(x^1) = (193^(1/2)+1)/(-12) // * x^1

1 = ((193^(1/2)+1)/(-12))*x^1 // : (193^(1/2)+1)/(-12)

-12*(193^(1/2)+1)^-1 = x^1

x = -12*(193^(1/2)+1)^-1

t_1 = (1-193^(1/2))/(-12)

x^-1-((1-193^(1/2))/(-12)) = 0

1*x^-1 = (1-193^(1/2))/(-12) // : 1

x^-1 = (1-193^(1/2))/(-12)

-1 < 0

1/(x^1) = (1-193^(1/2))/(-12) // * x^1

1 = ((1-193^(1/2))/(-12))*x^1 // : (1-193^(1/2))/(-12)

-12*(1-193^(1/2))^-1 = x^1

x = -12*(1-193^(1/2))^-1

x in { -12*(193^(1/2)+1)^-1, -12*(1-193^(1/2))^-1 }

See similar equations:

| 0=-4t-9 | | 243x^2-90x+36=0 | | -6v-17=-19 | | 3/4w-w | | -6v-17=19 | | x-31=53 | | 14=-4y-16 | | 2b+3a=92 | | -7+u=-8 | | -8u+29=0 | | x-6x=5 | | 8+q=-1 | | -6+14=6x-4x | | 8z=7/3 | | o*x=0 | | -5-x/x=0 | | 19-11=-3X+5X | | F(x)=-2x^2+16x+71 | | an=40n-4n-95 | | 9B=-18 | | x^3+x^2+x=101 | | -2Y+7Y=-4-6 | | 3x-6+8x+4+130= | | 4Z=2 | | 4/7-6/7=-4/3Z-4/3Z | | 2U-4U=2-16 | | 6n+3r=4*180 | | 4/5*1^1/16 | | 9N+3N=5*210 | | 4x+(-2x)+27=2x+(-2x)-2 | | -8x-6x=-2x-7 | | 36overn+2=4 |

Equations solver categories